

A002397


a(n) = n! * lcm({1, 2, .. n + 1}).
(Formerly M2036 N0807)


12



1, 2, 12, 72, 1440, 7200, 302400, 4233600, 101606400, 914457600, 100590336000, 1106493696000, 172613016576000, 2243969215488000, 31415569016832000, 942467070504960000, 256351043177349120000, 4357967734014935040000, 1490424965033107783680000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This term appears in the numerator of several sequences of coefficients used in numerical solutions of ordinary differential equations.


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Jack W Grahl, Table of n, a(n) for n = 0..100
Jack W Grahl, Explanation of the use of this sequence
Jack W Grahl, Python code to calculate this and related sequences
W. F. Pickard, Tables for the stepbystep integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229233.
W. F. Pickard, Tables for the stepbystep integration of ordinary differential equations of the first order, J. ACM 11 (1964), 229233. [Annotated scanned copy]


FORMULA

a(n) = n! * lcm{1,2,...,n+1} = n!*A003418(n+1).  Sean A. Irvine, Nov 07 2013


EXAMPLE

5! is 120, and the least common multiple of 2, 3, 4, 5 and 6 is 60, so a(5) = 7200.


CROSSREFS

Cf. A010796. Row sums of A260780, also of A260781.
The following sequences are taken from page 231 of Pickard (1964): A002397, A002398, A002399, A002400, A002401, A002402, A002403, A002404, A002405, A002406, A260780, A260781.
Sequence in context: A002867 A235359 A130426 * A163085 A328946 A037515
Adjacent sequences: A002394 A002395 A002396 * A002398 A002399 A002400


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Sean A. Irvine, Nov 07 2013
More terms from Jack W Grahl, Feb 27 2021


STATUS

approved



